Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Cell Biol Int ; 48(5): 737-754, 2024 May.
Article in English | MEDLINE | ID: mdl-38410054

ABSTRACT

Macrophages in the endometrium promote receptivity and implantation by secreting proinflammatory cytokines and other factors like fractalkine (FKN). Macrophages are closely linked to regulating iron homeostasis and can modulate iron availability in the tissue microenvironment. It has been revealed that the iron metabolism of the mother is crucial in fertility. Iron metabolism is strictly controlled by hepcidin, the principal iron regulatory protein. The inflammatory cytokines can modulate hepcidin synthesis and, therefore, the iron metabolism of the endometrium. It was proven recently that FKN, a unique chemokine, is implicated in maternal-fetal communication and may contribute to endometrial receptivity and implantation. In the present study, we investigated the effect of activated THP-1 macrophages and FKN on the iron metabolism of the HEC-1A endometrial cells. We established a noncontact coculture with or without recombinant human FKN supplementation to study the impact of the macrophage-derived factors and FKN on the regulation of hepcidin synthesis and iron release and storage of endometrial cells. Based on our findings, the conditioned medium of the activated macrophages could modify hepcidin synthesis via the nuclear factor kappa-light-chain-enhancer of activated B cells, the signal transducer and activator of transcription 3, and the transferrin receptor 2/bone morphogenetic protein 6/suppressor of mothers against decapentaplegic 1/5/8 signaling pathways, and FKN could alter this effect on the endometrial cells. It was also revealed that the conditioned macrophage medium and FKN modulated the iron release and storage of HEC-1A cells. FKN signaling may be involved in the management of iron trafficking of the endometrium by the regulation of hepcidin. It can contribute to the iron supply for fetal development at the early stage of the pregnancy.


Subject(s)
Chemokine CX3CL1 , Hepcidins , Female , Humans , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Hepcidins/metabolism , Endometrium/metabolism , Macrophages/metabolism , Iron/metabolism
2.
Int J Mol Sci ; 25(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38339005

ABSTRACT

Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.


Subject(s)
Chemokine CX3CL1 , Diabetic Retinopathy , Chemokine CX3CL1/pharmacology , Chemokine CX3CL1/therapeutic use , Diabetes Mellitus/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Microglia/metabolism , Retina/metabolism , Signal Transduction , Diabetes Complications/drug therapy , Animals , Mice
3.
Stroke ; 54(9): 2420-2433, 2023 09.
Article in English | MEDLINE | ID: mdl-37465997

ABSTRACT

BACKGROUND: Hematoma clearance has been a proposed therapeutic strategy for hemorrhagic stroke. This study investigated the impact of CX3CR1 (CX3C chemokine receptor 1) activation mediated by r-FKN (recombinant fractalkine) on hematoma resolution, neuroinflammation, and the underlying mechanisms involving AMPK (AMP-activated protein kinase)/PPARγ (peroxisome proliferator-activated receptor gamma) pathway after experimental germinal matrix hemorrhage (GMH). METHODS: A total of 313 postnatal day 7 Sprague Dawley rat pups were used. GMH was induced using bacterial collagenase by a stereotactically guided infusion. r-FKN was administered intranasally at 1, 25, and 49 hours after GMH for short-term neurological evaluation. Long-term neurobehavioral tests (water maze, rotarod, and foot-fault test) were performed 24 to 28 days after GMH with the treatment of r-FKN once daily for 7 days. To elucidate the underlying mechanism, CX3CR1 CRISPR, or selective CX3CR1 inhibitor AZD8797, was administered intracerebroventricularly 24 hours preinduction of GMH. Selective inhibition of AMPK/PPARγ signaling in microglia via intracerebroventricularly delivery of liposome-encapsulated specific AMPK (Lipo-Dorsomorphin), PPARγ (Lipo-GW9662) inhibitor. Western blot, Immunofluorescence staining, Nissl staining, Hemoglobin assay, and ELISA assay were performed. RESULTS: The brain expression of FKN and CX3CR1 were elevated after GMH. FKN was expressed on both neurons and microglia, whereas CX3CR1 was mainly expressed on microglia after GMH. Intranasal administration of r-FKN improved the short- and long-term neurobehavioral deficits and promoted M2 microglia polarization, thereby attenuating neuroinflammation and enhancing hematoma clearance, which was accompanied by an increased ratio of p-AMPK (phosphorylation of AMPK)/AMPK, Nrf2 (nuclear factor erythroid 2-related factor 2), PPARγ, CD36 (cluster of differentiation 36), CD163 (hemoglobin scavenger receptor), CD206 (the mannose receptor), and IL (interleukin)-10 expression, and decreased CD68 (cluster of differentiation 68), IL-1ß, and TNF (tumor necrosis factor) α expression. The administration of CX3CR1 CRISPR or CX3CR1 inhibitor (AZD8797) abolished the protective effect of FKN. Furthermore, selective inhibition of microglial AMPK/PPARγ signaling abrogated the anti-inflammation effects of r-FKN after GMH. CONCLUSIONS: CX3CR1 activation by r-FKN promoted hematoma resolution, attenuated neuroinflammation, and neurological deficits partially through the AMPK/PPARγ signaling pathway, which promoted M1/M2 microglial polarization. Activating CX3CR1 by r-FKN may provide a promising therapeutic approach for treating patients with GMH.


Subject(s)
Chemokine CX3CL1 , Infant, Newborn, Diseases , Rats , Animals , Humans , Infant, Newborn , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , PPAR gamma/metabolism , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Rats, Sprague-Dawley , Neuroinflammatory Diseases , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Microglia/metabolism , Hematoma/metabolism , CX3C Chemokine Receptor 1/metabolism
4.
Neuromodulation ; 26(5): 938-949, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37045646

ABSTRACT

INTRODUCTION: Despite increasing utilization of spinal cord stimulation (SCS), its effects on chemoefficacy, cancer progression, and chemotherapy-induced peripheral neuropathy (CIPN) pain remain unclear. Up to 30% of adults who are cancer survivors may suffer from CIPN, and there are currently no effective preventative treatments. MATERIALS AND METHODS: Through a combination of bioluminescent imaging, behavioral, biochemical, and immunohistochemical approaches, we investigated the role of SCS and paclitaxel (PTX) on tumor growth and PTX-induced peripheral neuropathy (PIPN) pain development in T-cell-deficient male rats (Crl:NIH-Foxn1rnu) with xenograft human non-small cell lung cancer. We hypothesized that SCS can prevent CIPN pain and enhance chemoefficacy partially by modulating macrophages, fractalkine (CX3CL1), and inflammatory cytokines. RESULTS: We show that preemptive SCS enhanced the antitumor efficacy of PTX and prevented PIPN pain. Without SCS, rats with and without tumors developed robust PIPN pain-related mechanical hypersensitivity, but only those with tumors developed cold hypersensitivity, suggesting T-cell dependence for different PIPN pain modalities. SCS increased soluble CX3CL1 and macrophages and decreased neuronal and nonneuronal insoluble CX3CL1 expression and inflammation in dorsal root ganglia. CONCLUSION: Collectively, our findings suggest that preemptive SCS is a promising strategy to increase chemoefficacy and prevent PIPN pain via CX3CL1-macrophage modulation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neuralgia , Spinal Cord Stimulation , Humans , Rats , Male , Animals , Paclitaxel/adverse effects , Paclitaxel/metabolism , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Rats, Sprague-Dawley , Neuralgia/metabolism , Spinal Cord/pathology , Ganglia, Spinal/metabolism
5.
Am J Physiol Endocrinol Metab ; 324(5): E375-E389, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36856190

ABSTRACT

Muscle contractile activity stimulates intramuscular recruitment of immune cells including neutrophils emerging to serve as a prerequisite for exerting proper muscular performance, although the underlying mechanisms and their contributions to myokine upregulation remain ill-defined. We previously reported that pharmacological inhibition of CX3CR1, a fractalkine receptor, dampens gnawing-dependent neutrophil recruitment into masseter muscles along with compromising their masticatory activity. By using a running exercise model, we herein demonstrated that hindlimb muscles require collaborative actions of both CX3CR1- and CXCR2-mediated signals for achieving neutrophil recruitment, upregulation of myokines including interleukin (IL)-6, enhanced GLUT4 translocation, and adequate endurance capability. Mechanistically, we revealed that a combination of CX3CR1 and CXCR2 antagonists, i.e., AZD8797 and SB2205002, inhibits exercise-inducible ICAM-1 and fractalkine upregulations in the area of the endothelium and muscle-derived CXCL1 upregulation, both of which apparently contribute to the intramuscular neutrophil accumulation in working muscles. Intriguingly, we also observed that 2 h of running results in intramuscular augmentation of innate lymphoid type 2 cells (ILC2s) markers, i.e., Bcl11b mRNA levels and anti-GATA-3-antibody-positive signals, and that these effects are completely abolished by administration of the combination of CX3CR1 and CXCR2 antagonists. Taken together, our findings strongly suggest that the exercise-evoked regional interplay among working myofibers, the adjacent endothelium, and recruited immune cells including neutrophils and possibly ILC2s, mediated through these local factors, plays a key role in the organization of the intramuscular microenvironment supporting the performance of hindlimb muscles during running.NEW & NOTEWORTHY This study provides compelling evidence that running-dependent intramuscular neutrophil recruitment requires both CX3CR1- and CXCR2-mediated signals that prime not only myofiber-derived myokine upregulations but also endothelium ICAM-1 and fractalkine expressions. The results revealed the importance of the exercise-evoked regional interplay among working myofibers, the adjacent endothelium, and recruited immune cells, including neutrophils and possibly ILC2s, which plays a key role in the organization of the intramuscular microenvironment supporting the performance of hindlimb muscles during running.


Subject(s)
Immunity, Innate , Running , Animals , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/pharmacology , Interleukin-6/metabolism , Lymphocytes , Neutrophil Infiltration , Neutrophils , Up-Regulation , Receptors, Interleukin-8B/metabolism , CX3C Chemokine Receptor 1/metabolism
6.
Comput Math Methods Med ; 2022: 1949344, 2022.
Article in English | MEDLINE | ID: mdl-36118839

ABSTRACT

Alzheimer's disease (AD) is the most commonly seen neurodegenerative brain disorder. The paracrine effects of mesenchymal stem cells (MSCs) signify to trigger immunomodulation and neural regeneration. However, the role and mechanism of bone marrow MSC- (BMSC-) derived CX3CL1 in AD remains elusive. In this study, Aß 1-42-intervened SH-SY5Y cells were used for AD cell model construction. pcDNA-ligated CX3CL1 overexpression plasmids were transfected into BMSCs. The levels of soluble and membrane-bound CX3CL1 were detected by ELISA and Western blotting (WB), respectively. The growth, apoptosis, and pathology of AD model cells were evaluated by CCK-8, flow cytometry, immunofluorescence, morphology observation, biochemical examination, and WB. It was found that Aß 1-42 significantly reduced CX3CL1 expression either in soluble or membrane-bound form, cell viability, relative protein expression of synaptic markers, SOD, CAT, and GSH-Px contents, as well as Trx protein expression; in addition, it enhanced the apoptosis rate, the relative expression of cleaved caspase-3, Aß, tau, p-Tau, Iba1, MDA, TXNIP, and NLRP3 in SH-SY5Y cells; however, the above effects were prominently reversed by the coculture of BMSCs. Moreover, overexpression of CX3CL1 in BMSCs observably strengthened the corresponding tendency caused by BMSCs. In conclusion, through the TXNIP/NLRP3 pathway, CX3CL1 derived from BMSCs inhibited pathological damage in Aß 1-42-induced SH-SY5Y.


Subject(s)
Alzheimer Disease , Mesenchymal Stem Cells , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 3/metabolism , Caspase 3/pharmacology , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Sincalide/metabolism , Sincalide/pharmacology , Superoxide Dismutase
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(2): 110-115, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35356878

ABSTRACT

Objective To investigate the mechanism of CX3CL1/fractalkine (FKN) in lipopolysaccharide (LPS)-induced apoptosis of mouse RAW264.7 macrophages. Methods RAW264.7 macrophages were infected with FKN overexpression or knockdown lentivirus plasmids containing red fluorescent protein and treated with LPS. The apoptosis of RAW264.7 macrophages was detected by flow cytometry. The expression levels of FKN, Wnt4, ß-catenin, cleaved caspase-3(c-caspase-3), c-caspase-9, BAX and cytochrome C (CytC) proteins were measured by Western blotting. The expression and localization of c-caspase-3 and c-caspase-9 in RAW264.7 macrophages were determined by immunofluorescence cytochemistry. Results Compared with control group, the apoptosis rate and the protein levels of FKN, Wnt4, ß-catenin, c-caspase-3, c-caspase-9, BAX and CytC increased significantly in LPS group. Compared with LPS group, the apoptosis rate of FKN overexpression combined with LPS group was significantly decreased. The protein levels of FKN, Wnt4 and ß-Catenin reported an increase, while the protein levels of c-caspase-3, c-caspase-9, BAX, CytC and localization of c-caspase-3 and c-caspase-9 in the cytoplasm showed a decrease in FKN overexpression combined with LPS group. The opposite results were observed in FKN knockdown combined with LPS group. Conclusion CX3CL1/FKN can activate Wnt/ß-catenin signal pathway, downregulate the key proteins expression of mitochondrial apoptosis pathway, and reduce LPS-induced apoptosis of RAW264.7 macrophages.


Subject(s)
Lipopolysaccharides , beta Catenin , Animals , Apoptosis , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
8.
J Cell Mol Med ; 26(4): 1229-1244, 2022 02.
Article in English | MEDLINE | ID: mdl-35023309

ABSTRACT

The concept of diabetic retinopathy (DR) has been extended from microvascular disease to neurovascular disease in which microglia activation plays a remarkable role. Fractalkine (FKN)/CX3CR1 is reported to regulate microglia activation in central nervous system diseases. To characterize the effect of FKN on microglia activation in DR, we employed streptozotocin-induced diabetic rats, glyoxal-treated R28 cells and hypoxia-treated BV2 cells to mimic diabetic conditions and explored retinal neuronal apoptosis, reactive oxygen species (ROS), as well as the expressions of FKN, Iba-1, TSPO, NF-κB, Nrf2 and inflammation-related cytokines. The results showed that FKN expression declined with diabetes progression and in glyoxal-treated R28 cells. Compared with normal control, retinal microglia activation and inflammatory factors surged in both diabetic rat retinas and hypoxia-treated microglia, which was largely dampened by FKN. The NF-κB and Nrf2 expressions and intracellular ROS were up-regulated in hypoxia-treated microglia compared with that in normoxia control, and FKN significantly inhibited NF-κB activation, activated Nrf2 pathway and decreased intracellular ROS. In conclusion, the results demonstrated that FKN deactivated microglia via inhibiting NF-κB pathway and activating Nrf2 pathway, thus to reduce the production of inflammation-related cytokines and ROS, and protect the retina from diabetes insult.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Microglia , Neuroinflammatory Diseases , Rats
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903661

ABSTRACT

Local blood flow control within the central nervous system (CNS) is critical to proper function and is dependent on coordination between neurons, glia, and blood vessels. Macroglia, such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation, and highlights changes during early diabetes. Structurally, microglia were found to contact retinal capillaries and neuronal synapses. In the brain and retinal explants, the addition of fractalkine, the sole ligand for monocyte receptor Cx3cr1, resulted in capillary constriction at regions of microglial contact. This vascular regulation was dependent on microglial Cx3cr1 involvement, since genetic and pharmacological inhibition of Cx3cr1 abolished fractalkine-induced constriction. Analysis of the microglial transcriptome identified several vasoactive genes, including angiotensinogen, a constituent of the renin-angiotensin system (RAS). Subsequent functional analysis showed that RAS blockade via candesartan abolished microglial-induced capillary constriction. Microglial regulation was explored in a rat streptozotocin (STZ) model of diabetic retinopathy. Retinal blood flow was reduced after 4 wk due to reduced capillary diameter and this was coincident with increased microglial association. Functional assessment showed loss of microglial-capillary response in STZ-treated animals and transcriptome analysis showed evidence of RAS pathway dysregulation in microglia. While candesartan treatment reversed capillary constriction in STZ-treated animals, blood flow remained decreased likely due to dilation of larger vessels. This work shows microglia actively participate in the neurovascular unit, with aberrant microglial-vascular function possibly contributing to the early vascular compromise during diabetic retinopathy.


Subject(s)
Chemokine CX3CL1/metabolism , Diabetic Retinopathy/pathology , Microglia/physiology , Retina/pathology , Animals , Benzimidazoles/pharmacology , Biphenyl Compounds/pharmacology , Chemokine CX3CL1/pharmacology , Diabetic Retinopathy/chemically induced , Diabetic Retinopathy/metabolism , Gene Expression Profiling , Mice , Microglia/metabolism , Neurons/physiology , Pericytes/pathology , Rats , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/genetics , Retina/metabolism , Retinal Vessels/drug effects , Retinal Vessels/pathology , Signal Transduction/drug effects , Streptozocin/pharmacology , Tetrazoles/pharmacology , Vasoconstriction/drug effects
10.
Stem Cell Reports ; 16(8): 1968-1984, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34270934

ABSTRACT

Neural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine. Exogenous fractalkine directly enhances OPC and oligodendrocyte genesis from SVZ NPCs in vitro. Infusion of fractalkine into the lateral ventricle of adult NPC lineage-tracing mice leads to increased newborn OPC and oligodendrocyte formation in vivo. We also show that OPCs secrete fractalkine and that inhibition of endogenous fractalkine signaling reduces oligodendrocyte formation in vitro. Finally, we show that fractalkine signaling regulates oligodendrogenesis in cerebellar slices ex vivo. In summary, we demonstrate a novel role for fractalkine signaling in regulating oligodendrocyte genesis from postnatal CNS precursor cells.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Lateral Ventricles/metabolism , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Signal Transduction , Animals , CX3C Chemokine Receptor 1/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Chemokine CX3CL1/pharmacology , Gene Expression/drug effects , Lateral Ventricles/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Oligodendrocyte Precursor Cells/cytology , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/cytology , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
11.
Exp Cell Res ; 405(2): 112704, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34126056

ABSTRACT

Fractalkine (FKN) is a chemokine with several roles, including chemotaxis; adhesion; and immune damage, which also participates in cell inflammation and apoptosis and responds to the pathogenesis of autoimmune diseases. Given the involvement of regulatory T cells (Treg) cells in autoimmune diseases, this study investigated the regulatory mechanism of FKN in renal injury and Treg apoptosis via the p38 mitogen-activated protein kinase (p38MAPK) signaling pathway in lupus-prone mice. Lupus was induced in BALB/c female mice by injection of pristane, followed by isolation of CD4+CD25+ Treg cells from the spleen of lupus model mice. To deplete FKN, mice received injection of an anti-FKN antibody, and Treg cells were transfected with FKN small-interfering RNA. Lupus mice and Treg cells were treated with the p38MAPK inhibitor SB203580 and activator U-46619, respectively, and urine protein and serum urea nitrogen, creatinine, and autoantibodies were measured and renal histopathological changes analyzed. We determined levels of FKN, phosphorylated p38 (p-p38), and forkhead box P3 (FOXP3) in renal tissue and Treg cells, and analyzed apoptosis rates and levels of key apoptotic factors in Treg cells. The renal FKN and p-p38 levels increased, whereas renal FOXP3 level decreased in lupus-prone mice. Treatment with the anti-FKN antibody and the p38MAPK inhibitor ameliorated proteinuria and renal function, significantly reducing serum autoantibody, renal FKN, and p-p38 levels while increasing renal FOXP3 level in lupus-prone mice. Moreover, FKN knockdown and administration of the p38MAPK inhibitor reduced apoptosis and levels of pro-apoptotic factors, increased levels of anti-apoptotic factors, and suppressed activation of p38MAPK signaling in Treg cells derived from lupus model mice. Furthermore, treatment with the p38MAPK activator U-46619 had the opposite effect on these cells. These data indicated that depletion of FKN ameliorated renal injury and Treg cell apoptosis via inhibition of p38MAPK signaling in lupus nephritis, suggesting that targeting FKN represents a potential therapeutic strategy for treating Lupus nephritis.


Subject(s)
Acute Kidney Injury/drug therapy , Apoptosis/drug effects , Chemokine CX3CL1/pharmacology , Lupus Nephritis/drug therapy , T-Lymphocytes, Regulatory/drug effects , p38 Mitogen-Activated Protein Kinases/drug effects , Acute Kidney Injury/immunology , Acute Kidney Injury/metabolism , Animals , Apoptosis/physiology , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Kidney/immunology , Kidney/metabolism , Lupus Nephritis/metabolism , Mice, Inbred BALB C , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
12.
J Neurophysiol ; 125(5): 1598-1611, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33596743

ABSTRACT

Neuroactive substances released by activated microglia contribute to hyperexcitability of spinal dorsal horn neurons in many animal models of chronic pain. An important feedback loop mechanism is via release of fractalkine (CX3CL1) from primary afferent terminals and dorsal horn neurons and binding to CX3CR1 receptors on microglial cells. We studied the involvement of fractalkine signaling in latent and manifest spinal sensitization induced by two injections of nerve growth factor (NGF) into the lumbar multifidus muscle as a model for myofascial low back pain. Single dorsal horn neurons were recorded in vivo to study their receptive fields and spontaneous activity. Under intrathecal vehicle application, the two NGF injections led to an increased proportion of neurons responding to stimulation of deep tissues (41%), to receptive field expansion into the hindlimb (15%), and to resting activity (53%). Blocking fractalkine signaling by continuous intrathecal administration of neutralizing antibodies completely prevented these signs of spinal sensitization to a similar extent as in a previous study with the microglia inhibitor minocycline. Reversely, fractalkine itself induced similar sensitization in a dose-dependent manner (for 200 ng/mL: 45% deep tissue responses, 24% receptive field expansion, and 45% resting activity) as repeated nociceptive stimulation by intramuscular NGF injections. A subsequent single NGF injection did not have an additive effect. Our data suggest that neuron-to-microglia signaling via the CX3CL1-CX3CR1 pathway is critically involved in the initiation of nonspecific, myofascial low back pain through repetitive nociceptive stimuli.NEW & NOTEWORTHY Blocking fractalkine signaling by neutralizing antibodies completely prevented spinal sensitization induced by repetitive mild nociceptive input [2 nerve growth factor (NGF) injections into the multifidus muscle] Conversely, fractalkine given intrathecally caused the same pattern of spinal sensitization as the nociceptive NGF injections. Fractalkine signaling is critically involved in sensitization of dorsal horn neurons induced by repeated nociceptive low back muscle stimulation and may hence be a potential target for the prevention of nonspecific, myofascial low back pain.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Central Nervous System Sensitization/physiology , Chemokine CX3CL1/metabolism , Low Back Pain/metabolism , Nociceptive Pain/metabolism , Posterior Horn Cells/metabolism , Signal Transduction/physiology , Animals , Antibodies, Neutralizing/pharmacology , CX3C Chemokine Receptor 1/drug effects , Central Nervous System Sensitization/drug effects , Chemokine CX3CL1/drug effects , Chemokine CX3CL1/pharmacology , Chronic Pain , Disease Models, Animal , Dose-Response Relationship, Drug , Fascia/physiopathology , Male , Nerve Growth Factor/pharmacology , Nociceptive Pain/chemically induced , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
13.
Mol Neurobiol ; 58(3): 1074-1087, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33089423

ABSTRACT

Radiation-induced brain injury (RIBI) is a serious complication in cancer patients receiving brain radiotherapy, and accumulating evidence suggests that microglial activation plays an important role in its pathogenesis. Fractalkine (FKN) is a crucial mediator responsible for the biological activity of microglia. In this study, the effect of FKN on activated microglial after irradiation and RIBI was explored and the underlying mechanisms were investigated. Our study demonstrated treatment with exogenous FKN diminished radiation-induced production of pro-inflammatory factors, such as IL1-ß and TNFα, promoted transformation of microglial M1 phenotype to M2 phenotype after irradiation, and partially recovered the spatial memory of irradiated mice. Furthermore, upregulation of FKN/CX3CR1 via FKN lentivirus promoted radiation-induced microglial M2 transformation in the hippocampus and diminished the spatial memory injury of irradiated mice. Furthermore, while inhibiting the expression of CX3CR1, which exclusively expressed on microglia in the brain, the regulatory effect of FKN on microglia and cognitive ability of mice disappeared after radiation. In conclusion, the FKN could attenuate RIBI through the microglia polarization toward M2 phenotype by binding to CX3CR1 on microglia. Our study unveiled an important role of FKN/CX3CR1 in RIBI, indicating that promotion of FKN/CX3CR1 axis could be a promising strategy for the treatment of RIBI.


Subject(s)
Brain Injuries/drug therapy , Brain Injuries/pathology , Cell Polarity , Chemokine CX3CL1/therapeutic use , Microglia/pathology , Neuroprotective Agents/therapeutic use , Radiation Injuries/drug therapy , Animals , Brain Injuries/etiology , CX3C Chemokine Receptor 1/metabolism , Cell Line , Cell Polarity/drug effects , Cesium Radioisotopes , Chemokine CX3CL1/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cranial Irradiation , Female , Hippocampus/pathology , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neurogenesis/drug effects , Neuroprotective Agents/pharmacology , Phagocytosis/drug effects , Phenotype , Proliferating Cell Nuclear Antigen/metabolism , Radiation Injuries/complications , Radiation Injuries/pathology , Spatial Learning , Spatial Memory/drug effects
14.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365902

ABSTRACT

Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto-maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the endometrium cells secrete fractalkine. CX3CR1 controls three major signalling pathways, PLC-PKC pathway, PI3K/AKT/NFκB pathway and Ras-mitogen-activated protein kinases (MAPK) pathways regulating proliferation, growth, migration and apoptosis. In this study, we focused on the molecular mechanisms of FKN treatment influencing the expression of implantation-related genes in trophoblast cells (JEG-3) both in mono-and in co-culture models. Our results reveal that FKN acted in a concentration and time dependent manner on JEG-3 cells. FKN seemed to operate as a positive regulator of implantation via changing the action of progesterone receptor (PR), activin receptor and bone morphogenetic protein receptor (BMPR). FKN modified also the expression of matrix metalloproteinase 2 and 9 controlling invasion. The presence of HEC-1A endometrial cells in the co-culture contributed to the effect of fractalkine on JEG-3 cells regulating implantation. The results suggest that FKN may contribute to the successful attachment and implantation of embryo.


Subject(s)
Chemokine CX3CL1/pharmacology , Activins/metabolism , Blotting, Western , Bone Morphogenetic Protein 2/metabolism , CX3C Chemokine Receptor 1/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Coculture Techniques , Female , Follistatin/metabolism , Humans , Immunoblotting , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/drug effects
15.
Cell Mol Neurobiol ; 39(7): 985-1001, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31172340

ABSTRACT

Fractalkine (CX3CL1) is a potent inflammatory mediator of the central nervous system, which is expressed by neurons and regulates microglial functions by binding to fractalkine receptor (CX3CR1). It has been demonstrated that neuroinflammation plays an important role in iron accumulation of the brain leading to neuronal cell death. The major regulator of iron homeostasis is the peptide hormone hepcidin. Hepcidin expression is triggered by inflammatory conditions, which may contribute to the neuronal iron accumulation. In the present study, we established a bilaminar co-culture system of differentiated SH-SY5Y cells and BV-2 microglia as a neuronal model to examine the effect of soluble fractalkine on iron homeostasis of microglia and SH-SY5Y cells. We determined the hepcidin expression of fractalkine-treated microglia which showed significant elevation. We examined the relation between increased hepcidin secretion, the known hepcidin regulators and the signalling pathways controlled by fractalkine receptor. Our data revealed that TMPRSS6 and alpha 1-antitrypsin levels decreased due to fractalkine treatment, as well as the activity of NFκB pathway and the tyrosine phosphorylation of STAT5 factor. Moreover, fractalkine-induced hepcidin production of microglia initiated ferroportin internalisation of SH-SY5Y cells, which contributed to iron accumulation of neurons. Our results demonstrate that soluble form of fractalkine regulates hepcidin expression of BV-2 cells through fractalkine-mediated CX3CR1 internalisation. Moreover, fractalkine indirectly contributes to the iron accumulation of SH-SY5Y cells by activating ferroportin internalisation and by triggering the expressions of divalent metal transporter-1, ferritin heavy chain and mitochondrial ferritin.


Subject(s)
Chemokine CX3CL1/pharmacology , Hepcidins/metabolism , Iron/metabolism , Microglia/metabolism , Animals , CX3C Chemokine Receptor 1/metabolism , Cation Transport Proteins/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Endocytosis/drug effects , Ferritins/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/biosynthesis , Interleukin-6/genetics , Membrane Proteins/metabolism , Mice , Microglia/drug effects , Mitochondria/metabolism , Models, Biological , NF-kappa B/metabolism , Phosphotyrosine/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine Endopeptidases/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , alpha 1-Antitrypsin/metabolism
16.
Inflammation ; 42(4): 1287-1300, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30919150

ABSTRACT

Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases as well as being associated with the progression of kidney disease. Activation of the Wnt/ß-catenin pathway is associated with the pathogenesis of podocyte dysfunction and can play a role in renal injury. Furthermore, the expression of fractalkine (FKN) induced by lipopolysaccharides (LPS) is also one of crucial inflammation factors closely related to renal tissue damage. The aim of this study is to explore the mechanism of LPS-induced FKN expression leading to podocyte injury and contribute to acute kidney injury (AKI) through regulation of Wnt/ß-catenin pathway. An AKI model was established for in vivo experiments and blood was collected for serum BUN and Cr measurement, and histopathological features of the kidneys were studied by PASM and IHC staining. For in vitro experiments, a mouse podocyte cell line was stimulated with different concentrations of LPS for 24 and 48 h after which podocyte viability and apoptosis of cells were evaluated. The expression of podocyte-specific markers, FKN and Wnt/ß-catenin pathway mRNA and protein was detected in mice and cells by using qRT-PCR and western blotting. LPS induced the expression of FKN and activation of the Wnt/ß-catenin pathway, leading to a decrease of podocyte-specific proteins which resulted in poor renal pathology and dysfunction in the AKI mouse model. Moreover, LPS treatment significantly decreased cell viability and induced podocyte apoptosis in a dose-dependent manner that causes changes in the expression of podocyte-specific proteins through activation of FKN and the Wnt/ß-catenin pathway. Thus, the expression of FKN and Wnt/ß-catenin pathway by LPS is closely associated with podocyte damage or loss and could therefore account for progressive AKI. Our findings indicate that LPS induce podocyte injury and contribute to the pathogenesis of AKI by upregulating the expression of FKN and Wnt/ß-catenin pathway.


Subject(s)
Acute Kidney Injury/etiology , Chemokine CX3CL1/pharmacology , Podocytes/pathology , Wnt Signaling Pathway/drug effects , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Chemokine CX3CL1/metabolism , Disease Models, Animal , Disease Progression , Lipopolysaccharides/adverse effects , Mice , Podocytes/drug effects , beta Catenin/metabolism
17.
Cell Mol Neurobiol ; 39(3): 331-340, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30830503

ABSTRACT

Microglial cells are essential mediators of neuroinflammatory processes involved in several pathologies. Moreover, the chemokine fractalkine (CX3CL1) is essential in the crosstalk between neurons and microglia. However, the exact roles of CX3CL1, CX3CL1 receptor (CX3CR1) and microglia signalling are not fully understood in neuroinflammation. In addition, the findings reported on this subject are controversial. In this work, we investigated whether CX3CL1 induced pro-inflammatory signalling activation through NF-κB pathway. We were able to show that CX3CL1 activates the pro-inflammatory pathway mediated by the transcription factor NF-κB as an early response in microglial cells. On the other side, CX3CR1-deficient microglia showed impaired NF-κB axis. Phospho-kinase assay proteome profiles indicated that CX3CL1 induced several kinases such as MAPK's (ERK and JNK), SRC-family tyrosine kinases (YES, FGR, LCK and LYN) and most interesting and also related to NF-κB, the mitogen- and stress-activated kinase-1 (MSK1). Knockdown of MSK1 with short interfering RNAs decreased partially MSK1 protein levels (about 50%), enough to decrease the mRNA levels of Il-1ß, Tnf-α and iNos triggered by stimulation with CX3CL1. These results indicate the relevance of CX3CL1 in the activation of the pro-inflammatory NF-κB signalling pathway through MSK1 in microglial cells.


Subject(s)
Chemokine CX3CL1/pharmacology , Microglia/metabolism , NF-kappa B/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Animals , CX3C Chemokine Receptor 1/metabolism , Inflammation Mediators/metabolism , Mice, Knockout , Microglia/drug effects , Models, Biological , Phosphorylation/drug effects , Signal Transduction/drug effects , Transcription Factor RelA/metabolism
18.
Elife ; 72018 06 08.
Article in English | MEDLINE | ID: mdl-29882741

ABSTRACT

Human cytomegalovirus has hijacked and evolved a human G-protein-coupled receptor into US28, which functions as a promiscuous chemokine 'sink' to facilitate evasion of host immune responses. To probe the molecular basis of US28's unique ligand cross-reactivity, we deep-sequenced CX3CL1 chemokine libraries selected on 'molecular casts' of the US28 active-state and find that US28 can engage thousands of distinct chemokine sequences, many of which elicit diverse signaling outcomes. The structure of a G-protein-biased CX3CL1-variant in complex with US28 revealed an entirely unique chemokine amino terminal peptide conformation and remodeled constellation of receptor-ligand interactions. Receptor signaling, however, is remarkably robust to mutational disruption of these interactions. Thus, US28 accommodates and functionally discriminates amongst highly degenerate chemokine sequences by sensing the steric bulk of the ligands, which distort both receptor extracellular loops and the walls of the ligand binding pocket to varying degrees, rather than requiring sequence-specific bonding chemistries for recognition and signaling.


Subject(s)
Chemokine CX3CL1/chemistry , Receptors, Chemokine/chemistry , Receptors, G-Protein-Coupled/chemistry , Signal Transduction , Viral Proteins/chemistry , Animals , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Ligands , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Receptors, Chemokine/agonists , Receptors, Chemokine/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Viral Proteins/agonists , Viral Proteins/metabolism
19.
J Clin Invest ; 128(4): 1458-1470, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29504946

ABSTRACT

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and ß cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased ß cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered ß cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.


Subject(s)
Blood Glucose/metabolism , Chemokine CX3CL1/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Recombinant Fusion Proteins/pharmacology , Animals , Blood Glucose/genetics , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Chemokine CX3CL1/genetics , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Immunoglobulin Fc Fragments/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/pathology , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics
20.
J Leukoc Biol ; 103(1): 53-66, 2018 01.
Article in English | MEDLINE | ID: mdl-28978662

ABSTRACT

We report the unique role of CX3CL1 (or fractalkine) on CD11b+ myelomonocytic cells expressing CX3CR1, the only known receptor for CX3CL1, in promoting blood perfusion recovery. In a mouse ischemic hind-limb model, CD11b+ CX3CR1+ cells migrated to ischemic femoral muscles through CX3CL1-mediated chemotaxis. CD11b+ CX3CR1+ macrophages isolated from ischemic tissues [tissue (T)-CD11b+ CX3CR1+ ] of muscle exert a proangiogenic effect through platelet factor-4 (CXCL4; PF-4) production. PF-4 does not promote angiogenesis by itself but, instead, increases VEGF-mediated angiogenesis. Despite proangiogenic effects of muscle-derived T-CD11b+ CX3CR1+ macrophages, their clinical implementation is limited because muscle excision is required for cell harvesting. Therefore, we focused on the more accessible bone marrow (BM)-CD11b+ CX3CR1+ monocytes, which migrate from BM into ischemic muscles via CX3CL1-mediated chemotaxis. PF-4 expression was not detected in BM-CD11b+ CX3CR1+ monocytes under normal conditions, but CX3CL1 (50 ng/ml) induced high PF-4 expression and enabled BM-CD11b+ CX3CR1+ monocytes to achieve a similar angiogenic potential to that of T-CD11b+ CX3CR1+ macrophages ex vivo. Furthermore, we were able to identify a subset of monocytes that express CD11b and CX3CR1 in human peripheral blood and confirmed the proangiogenic effect of CX3CL1 treatment. Thus, CX3CL1-treated CD11b+ CX3CR1+ monocytes may be of potential therapeutic use to significantly accelerate recovery of blood perfusion in ischemic diseases.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/pharmacology , Ischemia/immunology , Macrophages/immunology , Monocytes/immunology , Neovascularization, Physiologic/drug effects , Animals , CD11b Antigen/metabolism , Cell Proliferation , Chemotaxis , Female , Human Umbilical Vein Endothelial Cells , Humans , Ischemia/drug therapy , Ischemia/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...